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This paper is a continuation of Part I under the same title and is concerned mainly
with the determination of the constitutive response coefficients, as well as some simple
illustrative examples. First, a system of simplified constitutive equations for
incompressible viscous turbulent flow is obtained from the more general system of
equations in Part I through a judicial choice of retaining only those terms which
appear to represent major features of the turbulent flow. Even for this simplified
system of equations, the identification of some of the constitutive coefficients presents
a formidable task; and this is especially true in the case of those coefficients that are
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450 J. S MARSHALL AND P. M. NAGHDI

associated with the presence of the additional independent variables of the theory due
to the manifestation of the alignment of eddies (on the microscopic scale), turbulent
fluctuation and eddy density. Because of this difficulty, the present effort for
identification of the various constitutive coefficients must be regarded partly as
tentative, pending future availability of suitable relevant experimental data and/or
pertinent numerical simulation results. Keeping this background in mind, most of the
relevant coefficients in the constitutive equations are determined, or the nature of
their functional forms are estimated, through consideration of ‘ cartoon-like’ models on
the microscopic level and these results are then used in conjunction with the
macroscopic equations of motion to examine a number of simple solutions. These
include the possibility of a flow possessing a constant uniform velocity gradient and
solutions pertaining to decay of flow anisotropy and plane turbulent channel flows.
The predicted theoretical calculations are in general accord with experimental
observations. In addition, for plane channel flow, plots of variation along the width
of the channel for the turbulent temperature and the macroscopic velocity compare
favourably with corresponding known experimental results.

1. INTRODUCTION

This paper is a companion to Part I under the same title (hereafter referred to as I), which
contains the basic developments for a thermodynamical theory of turbulent fluid flow. The
purpose of the present paper is to provide a number of simplifications of the basic theory in I,
necessary further identification between quantities defined on microscopic and macroscopic
scales, determination of the various constitutive coefficients, and also illustrations for the use of
the resulting equations by solving some simple turbulent flow problems. Determination of the
functional forms of the constitutive response coefficients of the theory is required before the use
of the turbulent flow equations in solving specific problems, and thus such identification
necessarily constitutes a major portion of the present paper.

In I, a theory based on a continuum model of turbulence is formulated on the macroscopic
(bulk) scale which employs certain additional independent variables and associated balance
laws to describe particular features occurring on the microscopic (turbulent) and molecular
scales. These additional variables include the turbulent temperature 6, the eddy density pg
and the director d, as well as the usual thermal temperature 6. A set of governing equations
for turbulent fluid flow is then obtained (under certain plausible simplifying assumptions) with
the use of the invariance requirements under superposed rigid body motions and the
thermodynamical procedure of Green & Naghdi (1977), along with certain constraints placed
upon the theory due to director alignment and the condition of incompressibility (when
relevant).

A discussion pertinent to the direct measurement (from the microscopic scale) of the
additional turbulence variables 6, pg and d and including explicit identification of these
variables with microscopic features (which is much more detailed than that given in I) is
presented in §2. We emphasize that measurements of these additional turbulence variables in
future experimental work is vital in order to properly compare quantitative predictions of the
theory with these experimental results. A system of constitutive equations for an incompressible
viscous turbulent flow, which are simpler than those derived previously and do not include
several terms in the more general equations of I (§6), is recorded in §3. The physical
significance of various terms in these simplified equations is exammed and they seem to include
all major features of turbulent flow.
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In §4, we formulate ‘cartoon-like’ microscopic models (i.e. idealized microscopic flows
derived from pictures of the flow structure based on experimental studies), which are used to
obtain approximate functional forms for many of the response coefficients appearing in the
simplified constitutive equations of §3. Some of these ‘cartoon-like’ models (however not all)
yield results which correspond to similar estimates found in the turbulence literature (see, in
particular, Perry & Chong (1982), Ahlborn ¢t al. (1985) and Liu et al. (1985)), in which case
the discussion is made as brief as possible. The resulting equations are then used in §5 to solve
some simple problems that exhibit flow anisotropy. Included is a discussion of a flow possessing
a constant uniform velocity gradient and solutions for the decay of ‘ anisotropy’ in the absence
of ordinary velocity gradient and plane turbulent channel flows. These theoretical solutions are
found to possess appropriate functional forms, as well as predicted numerical calculations in the
case of plane channel flow, which are supported by results of corresponding known
experimental studies of Laufer (1951). Further comparison of these solutions with more
detailed experimental results may allow for accurate determination of the constants of
proportionality associated with certain constitutive coefficients ; however, such identification is
seriously hampered by the fact that two of the additional turbulence variables used here
(namely py and d) cannot easily be estimated from the available data reported in these
experimental studies, and hence only tentative estimates for these constants can be made. A
quick summary of the basic microscopic features that, if measured, would enable reasonable
estimates of pg and 4 is given in §6.

2. ON DIRECT MEASUREMENTS OF ADDITIONAL TURBULENCE VARIABLES
ON THE MICROSCOPIC SCALE

Before the discussion pertaining to the direct measurement of additional turbulence variables
Pgs O, d, it is desirable to provide supplementary background between the macroscopic
turbulent flow model introduced in I (§§4 and 5) and the actual microscopic turbulent flow.
Thus, we recall that turbulent flows are composed, at the microscopic level, of a great number
of swirling eddies and vortices. Although in reality the sizes and strengths of these eddies vary
nearly continuously within a sufficiently large fluid volume, it is convenient for the purposes
of modelling to consider a somewhat idealized structure. In such idealized turbulence, the
eddies are allowed to vary in size only among a small number of discrete size levels. The various
classifications of eddy sizes are typically defined such that eddies which have similar effects on
the macroscopic flow are grouped together in a single class. A great deal of discussion can be
found in the literature on the appropriate classifications of eddy sizes. (Approprlate quotatlons
from this literature can be found in I, Appendix A.)

There seems to be fair (although perhaps not complete) agreement in this llterature that a
minimum of three size classifications of vortices (as described by Savill (1987, pp. 540, 541) and
Townsend (1976, p. 105)) are‘needcd to sufficiently describe a turbulent flow. These include
the following classes: : ' Gl

(1) very large swirling motions (termed ‘lasmos’ by Sav1ll (1987)) whose dimensions are
roughly that of the macroscopic flow and whose orientations and strengths depend on the
particular flow geometry in question (these vortices are roughly two-dimensional and tend to
be located periodically in many flows) ; : s ;

(2) large eddies (termed ‘roller eddies’ by Sav1ll (1987), ‘main turbulent motion’ by
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Townsend (1976), ‘hairpin’ vortices by Head & Bandyopadhyay (1981), etc.), which are
oriented and strained by the macroscopic flow (these eddies are significantly smaller than the
‘lasmos,’” yet they contain most of the ‘hidden’ turbulent kinetic energy);

(3) smaller eddies, which arise from the break-up of larger eddies and act to dissipate the
turbulent energy into thermal heat.

Following Townsend (1976, p. 89), we assume that the rate of dissipation of turbulence is
controlled only by the rate at which the large eddies of class (2) can pass energy down to the
smaller eddies of class (3). Because on this assumption these small eddies control no feature of
the macroscopic turbulent flow, we do not need to describe particular aspects of these eddies
in the macroscopic theory. Additionally, several properties of the ‘lasmos’ type eddies of class
(1), such as their size, two-dimensional form, and periodicity, indicate that these vortices
represent (non-chaotic) solutions of the macroscopic turbulence equations, rather than a
(chaotic) structure on the microscopic level. The validity of this assumption is especially
evident for vortices that are in some way analogous to similar (non-chaotic) vortical solutions
of the laminar flow equations (such as the vortex-street type vortices in wake flows or the large
roller vortices in free shear layers). Other large (macroscopic) vortical motions may result from
flow ‘anisotropy’ in certain shearing motions. (Such ‘secondary’ flows in turbulence are
discussed in a recent review by Bradshaw (1987).)

We now recall from I (§§4 and 5) that certain features of the microscopic flow are already
explicitly represented, with the use of the additional turbulence’ variables pg, 6, and d, in the
macroscopic theory under consideration. In selecting these additional variables, our modelling
has necessarily centred around the large eddies of class (2). For instance, the turbulent
temperature 6 represents the manifestation of the ‘hidden’ portion of the microscopic kinetic
energy and, as already noted above, most of this kinetic energy may be associated with large
eddies of class (2). Similarly, the eddy density pj can be identified with the number of class (2)
eddies per unit volume. The magnitude of the director d is proportional to the degree of ‘ vortex
stretching’ of class (2) eddies, and the direction of d is constrained to be the same direction as
that along which class (2) eddies tend to become aligned. It may be noted that 6, and pg can
be related to the more standard ‘turbulent kinetic energy’ and ‘mixing length,’ respectively,
as will be shown presently in §§2.2 and 4.1. The main function of the director is to describe the
degree and direction of flow ‘anisotropy.’ As such, the director may be expected to significantly
affect the rate of entrainment of fluid at a turbulent—non-turbulent interface, the form of the
stress tensor #;, and the rate of production of turbulent fluctuations by the shearing of the
macroscopic flow. As discussed in I (§8), the latter effect can occur both within the fluid and
along a surface of discontinuity. o

To provide more detailed identification of and to facilitate direct measurement of the
additional turbulence variables pg, 01 and d, we now provide a detailed discussion of each of
these variables in the following subsections. Preliminary to such considerations, however, a
simplified model for the microscopic flow is introduced which is then used to clarify the
difference between the macroscopic flow and the ‘mean’ flow.

2.1. A simplified model of the microscopi? ﬂdw

We consider here a simplified model of the microscopic flow in which every macroscopic
point (in the current configuration) x is surrounded on the microscopic level by a (reasonably
small) region 2’ and an additional directed line segment which we represent by a vector
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function of position and time and denote by d = d(x, t). (We use the same notation here as that
in §5 of Part I, in anticipation of later identification of this directed line segment with the
director on the macroscopic level (see I, equation (5.4)).) Here the directed line segment d is
assumed to exist on a different dimensional space than the region #’, so that taken together
they constitute a four-dimensional region 2*. Let A be a parameter along d which varies in the
interval J = (—1,1), let x’ be a typical point in the region 2’ and let the macroscopic point
x be identified with the centre of mass of * corresponding to the point (x’,A) = (0,0). The
microscopic location x* (€ P*) may then be specified as

x* =x+Ad+x, (2.1)

where the asterisk in (2.1) and elsewhere in this section is used to designate quantities belonging
to the microscopic scale of motion. The velocity on the microscopic scale is

v* =v+Aw+v, (2.2)
where v¥=x*% v=x, w=d, v =X (2.3)

and (as in Part I) a superposed dot indicates differentiation with respect to ¢..
Letting dv* = dv’ dA be an element of the four-dimensional region 2*, the velocity v of the
centre of mass for an incompressible fluid (since the mass density is constant) must be such

that
1

1 (3
— v*dv*=—,th v*dv' dA
V*J.m v -1/ ’
1

= v+V, L’v dv' = v, (2.4)

where the hypervolume ¥"* and the volume ¥ occupy the regions #* and &', respectively.
The velocity v” may be referred to as the turbulent fluctuation velocity, and by (2.4); must
necessarily satisfy the condition

fdw=a | (2.5)
” ;

The microscopic kinetic energy per unit mass is k* = v*v* and its average over a volume
¥"* with the use of (2.2) can be calculated as follows:

1 1 1 ’ 7 ’
"/—/;_L, k*do* = WJ@* of o do* = K+;/7L’ s v; dv’, (2.6)
where Kk = }(v, v, + 5w, w,). 2.7

and where in obtaining (2.6), we have also used (2.4) and (2.5).

In view of the results (2.6) and (2.7), we are now in a position to identify the inertia
coefficients y,, y, which first appeared in the macroscopic kinetic energy introduced in I (§2).
Thus, from a direct comparison of (2.7) with the previous expression for & in I (equation (2.3))

we have
‘ 1n=0, y,= 11_2 (2.8)

As will become evident presently, we need to consider the question of what constitutes a
definition for ‘mean velocity’ on the microscopic scale. Clearly such a definition can be
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introduced in a variety of ways, but for our present purpose we define a ‘mean velocity’ v*
' v¥ = —,f v¥*dv = v+ Aw, (2.9)
v s

where (2.2) and (2.5) have been used in obtaining the second of (2.9). It should be noted that
the definition (2.9), is consistent with (2.4) and (2.5) in that the part of the velocity due to
turbulent fluctuations does not contribute to the mean velocity v¥*. Moreover, (2.9), clearly
shows that because of the additional structure included in the theory (in the form of the director
d) the velocity v is not identical to the ‘mean’ velocity v*. However, in many flows the director
velocity (but not necessarily the director itself) may be small compared to the velocity v, in
which case the ‘mean’ velocity v* may represent a sufficiently close approximation for v.
While the effect of the microscopic line segment is averaged over the hypervolume ¥"* as in
the case of (2.6) involving the microscopic velocity v*, because of the nature of the basic
ingredients of our thermomechanical model for turbulence (see §§4 and 5 of I) for the effect of
other microscopic variables such as the microscopic temperature 6* and the mass density p*
it is sufficient to consider their averaged values only over the three-dimensional volume ¥”. In
particular, the macroscopic thermal temperature 8;; may be identified with the microscopic

‘mean temperature’ 0% defined by

o*% = ; Llo* dv’ = Oy. (2.10)

Similarity, for a compressible fluid the macroscopic mass density p may be identified with the
microscopic ‘mean mass density’ p* defined by

;T’F=—1—/1—,fg’p*dv’=p. (2.11)

2.2. Measurement of turbulent temperature

The turbulent temperature 6; is defined such that the ‘mean’ value of the microscopic
kinetic energy per unit mass is related to the macroscopic kinetic energy « and the turbulent
temperature 6, by

1
WJ‘Q*K’_“ do* = K+L‘T6T, (212)
where ¢ is the turbulent specific heat. It is at once apparent from comparison of (2.12) and
(2.6) that i
epOp = 7;]?,%0; vy’ (2.13)
and we may then define ¢, and 6, as
1 a R '
Cp = Z’ 0,1. = 7;'[9"‘;‘1}‘ 2] dv s (2'14)

where a is an arbitrary constant with the physical dimensions of temperature divided by the
square of velocity. It should be clear that the definition (2.14), is consistent with the
assumption in I (§4) that 6, must vanish as the turbulent fluctuations vanish. For definiteness,
we choose the constant a as

oTsz
a=100—, (2.15)
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where the abbreviations ‘s’ and ‘m’ stand for seconds and metres, while one degree 7 is a
measure of turbulent temperature defined through the specification (2.15). The value of a in
(2.15) is chosen such that the resulting scale for turbulent temperature would be convenient
in the range of experimental studies usually made. With the use of (2.14) and (2. 15), values
of 6 can be obtained immediately from any of the various measurements of 1/ fg, vpvpdo’
found throughout the turbulence literature, i.e. from measurements of the usual turbulent
kinetic energy’.
2.3. Measurement of eddy density

As discussed previously; the eddy density py is simply the number of large (class 2) eddies
per unit volume of fluid. This definition is made, of course, with reference to the classification
of turbulent eddies introduced at the beginning of this section. In an actual turbulent flow there
is no clear distinction between the large (class 2) eddies and the small (class 3) eddies, but
rather a fairly gradual transition in size. To directly measure the eddy density pg, an
instrument or procedure is required that can both count and identify the large (class 2)
vortices. (Measurements of the common ‘mixing length’ also experience these difficulties.)

Supposing that a sufficient amount of information on the microscopic flow field is available
(such as might be the case in computer simulated ‘numerical experiments’), one must first
establish a cut-off energy level that can be used to distinguish the large eddies (containing most
of the microscopic kinetic energy) from the small eddies (containing only a negligible amount
of microscopic kinetic energy). Such a cut-off is of the same nature as estimates of boundary
layer thickness in laminar fluid flow. The number of eddies in a given volume possessing a net
energy in excess of this cut-off value can then be counted, so that py is simply the number of
such eddies divided by the volume that they occupy.

2.4. Measurement of the director

We recall from I (statement (5.4)) that the director magnitude is identified as being
proportional to the difference in magnitude of the central microscopic vorticity vectors of the
aligned and unaligned eddies times the ratio of number of large aligned eddies to the total
number of large eddies. The microscopic vorticity vector w* referred to here is obtained from
the difference between the microscopic velocity v* and the macroscopic velocity v as

follows:
¥ =V X (v¥—v). (2.16)

A typical magnitude w* of @* directed along the central axis of a large eddy is denoted by
o” if the eddy is aligned in the direction a® and by w° otherwise. If we denote by f the ratio of
number of large aligned eddies to the total number of large eddies contained in a (small)
microscopic region #* associated with a given macroscopic position X, then the director must

satisfy
d  flo*—w°) a. o (2.17)

Further identification of the director must satisfy the stipulation that the average value of the
kinetic energy on the microscopic level equals the macroscopic kinetic energy plus the part of
the macroscopic internal energy due to turbulent fluctuations. This requirement is satisfied if

we set o
d 0*—w
Z =‘[£——w—o———las, (218)

32 Vol. 327. A
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where L is a unit length of the same dimensions as d(L = 1 cm, say). It may be recalled that
for a potential fluid, the change of magnitude of the central vorticity vector of an eddy divided
by its initial value is exactly equal to the stretch of a material line segment lying along the
central axis of the eddy (Prandtl & Tietjens 1957, p. 200). In light of the identification (2.18),
the magnitude of the director may be viewed as the net ‘effective’ stretch of the central vortical
axes of large eddies contained in a certain microscopic region due to alignment of these eddies
by the macroscopic flow. The qualifier ‘effective’ is used here to indicate that, because the flow
is not potential and the circulation of the eddies is not necessarily constant, the actual stretch
along the central axes of these eddies accompanying a given vorticity change might be
considerably greater than indicated by (2.18).

Before measurement of the director, the principal direction a® of the rate of deformation
tensor along which the director is aligned must be identified at each macroscopic point x. After
measuring the central vorticity w* for a range of eddies directed both along @® and randomly
in the fluid, estimates of ®® and ®° can readily be made. However, the difficulties discussed
previously in respect to direct measurements of p, are even more acute in regard to
measurements of fin (2.18), where we must not only identify the large eddies from the small
eddies, but we must also distinguish the aligned eddies from the unaligned eddies. Despite these
difficulties, it should be possible to obtain direct experimental estimates of py and d using
modern experimental tools, especially in certain simplified special cases. In this regard, we note
that ‘pattern recognition techniques’ of the type used by Mumford (1982, 1983) might be
useful for the determination of p; and f. Estimates of the vorticity measures »® and &® may be
obtained by ‘conditional sampling techniques’ as used by Townsend (1979) or by the use of
multi-wire probes (such as in the work of Balint et al. 1986). Moreover, in numerical
‘experiments’ at the microscopic level based directly on the Navier—Stokes equations (such as
that of Kim et al. 1987), it should not be difficult to calculate either d or p; with the preceding
discussion as guidelines.

3. SIMPLIFIED EQUATIONS FOR INCOMPRESSIBLE VISCOUS TURBULENT FLOW

In our previous discussion of constitutive equations for turbulent flow (I, §6), our intention
was chiefly to illustrate the procedure (outlined at the end of I, §5) for placing restrictions on
the constitutive equations in a fairly general manner and with the aid of a few simplifying
assumptions. To meet this objective, it was necessary to assume that the dependence of the
Helmbholtz free energy ¢ and various other response functions on d; and d, , is fairly simple (i.e.
linear in 4, ; and quadratic in 4;). The purpose of the present section is to derive a relatively
simple set of governing equations that incorporate most (if not all) of the basic features of
turbulent fluid flow, and at the same time suppress terms which do not appear to possess clear
physical significance.

Also, the functional dependence of certain response functions on d, and d, , is somewhat
extended here over that assumed in I (§6) so as to account for a certain physical effect that for
the sake of simplicity was neglected previously. In particular, we now assume the free energy
¥ to have the form (compare with I, equation (6.14)):

'/’ = ¢o+¢1 dt,t""ﬁz dldt+¢3 dt,jdi,j' (3-1)

It should be noted that the addition of the last term in (3.1) may be significant in some
situations. Indeed, as will become apparent from our later discussions (Part II, §§5.3 and 5.4),
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the last term in (3.1) may be associated with certain effects caused by the extension of fairly
long microscopic vortices. (Such effects are sometimes referred to as ‘non-local’ in the literature
(Champagne et al. 1970, p. 83).)

The structure of the constitutive equations developed in I (§6) is at least as complex as that
found in many theories of viscoelastic and other non-newtonian fluids; and, hence, a drastic
simplification of these equations is clearly desirable. In proceeding with such a simplification,
we are guided both by physical intuition and various experimental observations recorded in the
literature, as well as by certain additional restrictions that are consistent with aspects of the
Second Law of Thermodynamics. Although the theoretical developments in I are carried out
for both compressible and incompressible fluids, we confine our attention in Part II to an
incompressible fluid only.

In addition to the simplifying assumptions introduced previously (I, §§6 and 8, especially
equations (6.12) and (8.13)), we also assume here that the dissipation of turbulence (associated
with parts of the variables £ and &) is unaffected by flow anisotropy, rate quantities and
temperature gradients. In light of (3.1) and the preceding discussion, we now introduce
constitutive equations for the determinate part of the remaining response functions as
follows: .

ko= 2pYryd,+v b —2pedy Ay, ‘

iy = pyr, 0y +2pY,d, ,,
tt‘; + Ztl =—p8y—pY1d; —2pY s dy 1 dy 4
+ pe(d; h; +d;h) — pedy(d, Ajlc - d; Ay)
+2p Atj +3v1(d, " —d;hy),

P =—Ko&uy bri =& b= 'Yo ™ ‘ (3-2)

K,
€u =9 +;0Lgmgm>

A, v 2
br= "'—“¢o p0 thth+p01 hih +p§s AuAua

€=¢gOx+cp O )

The coefficients ¢y, kg, Ay Y5 and v, in (3.2) must be non-negative and the coefficients
V¥o..-¥s in (3.1) must satisfy the three conditions in I (equations (8.17)), as well as

Yy = 0T3g3+'y 7 Z% (3.3)
The last condition (3.3) is obtained by the same procedure which led to the results in I
(equations (8.17)). Also, in (3.2) p is a Lagrange multiplier due to the constraint of
incompressibility introduced previously (I, equation (6.26)) and the rate-type variables 4,
Ay, W, are defined in I (§5, equations (5.1); , and (5.29),).

The magnitude d of d is given by (see I, equation (5.15))

d=da, (3.4)

where 4} are the components of the principal direction a® of the rate of deformation tensor
associated with the largest positive rate of stretching. The constitutive coefficients in (3.1) and
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(3.2) are in general functions of the variables 6y, 6, and py (although dependence on 6y is
often suppressed in some of these), and ¢y and ¢; are constant thermal and turbulent specific
heats. (Possible variation of ¢y with @y is neglected here.)

Recalling the incompressibility condition and the local conservation laws from I (equations
(6.24), (5.27), (5.28), (5.3) and (4.3) and (4.4), using the constitutive expressions (3.1) and
(3.2) and the simplifying assumptions (8.13) of I, after some straightforward algebraic
manipulations the governing equations for incompressible viscous turbulent flow become:

v,,=0, (3.5)
12pd; thy = plyd,—2pYy d* + 25 d, dy Ayy— vy d b+ Yy 1+ 2p 4y (g a5) 1 (3.6)

, 0 .
pi, = pb,—p + a_xj {us(dihy+dy hy) + pd, b — 5pdy iy + g dy(d, Ay + 4y Ayy) + 210 4,
— 1 (dihy+dyh) — Yy dy (—2pY5 d d]c,j —2pY,dd+pdiipry +2pd, (Y3 d i) i3, (B.T)

PE =" éTa : (3.8)

Plu 0}1 = (kHBH,i),t"_pq;O) (3.9)

Py 0"1' = (kpOr,1) "Pigo +{2p¥,dyw+p(¥r, 0+ 2¢, di 5) (W ;=g 341 1) T b b+ 2pg Ay A},
(3.10)

where the thermal and turbulent heat conductivities £y and k; and the coefficient ¢, are

defined as .
ka=0uky, kp=072;, Po="040, (3.11)

In recording the equations of motion (3.6)—(3.9) we have already adopted the inertia
coefficients (2.8) of §2 and all other quantities in (3.6) and (3.7) were defined previously in I.
Also, all other coefficients in (3.6)—(3.10) are assumed to be functions of p; and 6, only. It is
worth observing that various constitutive coefficients in (3.6)—(3.10) can be associated with
physical processes occurring on the microscopic scale as follows:

7o — rate of production of large (class 2) eddies,
ky — diffusion of thermal heat,
ky — diffusion of turbulent fluctuations,
o — dissipation of turbulent fluctuations,
¥, — some aspect of compressibility,
Y1, ¥rg, e, vy — decay and production of flow anisotropy,
3 — nonlocal effects associated with vortex stretching,
Mg — production of turbulent fluctuations in the absence of vortex stretching.

The first term in (3.1), namely ¥, does not appear in (3.6)—(3.10), because these equations
apply to an incompressible fluid only. The coefficient gy must be retained so that the
Navier—Stokes equations are recovered again in the absence of turbulence. We may also observe
that in the absence of the director and its gradient (4, = 4, ; = 0), but with g4 non-zero, the
resulting equations would be similar to those of ‘eddy-viscosity’ type models sometimes used
in the literature. We recall in this connection that #; depends on p; (which is related to the
‘mixing length’) and on @; (which is related to the ‘turbulent kinetic energy’). Also, the
various terms containing the coefficients {,, ¥,, ¢ and v, are associated with the production
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and decay of the macroscopic ‘anisotropy’ due to microscopic vortex strctchmg, as represcnted
on the macroscopic scale by the director d. :

The terms occurring between brackets in (3.7) represent the ordinary stress tensor #,+%,,
apart from the indeterminate part arising from incompressibility, (I, equations (6.25) and
(6.26)) and the terms occurring between brackets in the balance of turbulent entropy (3.10)
represent the rate of production of turbulent fluctuations in the medium. Although these terms
are fairly complex, it should be emphasized that their forms are not chosen by ad hoc
assumptions here, but rather they are obtained as necessary consequences of the simpler and
more intuitive assumptions related to various other effects already described in this section.
Several studies found in the literature begin by introducing ad koc assumptions for ¢, and an
expression for the rate of production of ‘turbulent kinetic energy’, as well as assumptions for
various other quantities (some of which may be regarded as analogous to those introduced in
the present paper). Apart from the fact that these studies are not based on. a properly
formulated thermodynamical theory, the form of the correct expressions for #; and rate of
turbulence production are not necessarily easily determined by just intuitive guessing. .

We also note that the ‘cascade’ process of energy transfer from the macroscopic flow to the
large turbulent eddies (through vortex stretching, etc.) and finally to the small eddies, which
dissipate the energy into thermal heat, is included in, and is even an intrinsic part of, the
present theory. In particular, the rate of deformation and vorticity of the macroscopic flow (as
described by 4,; and W), the latter of which is included in 4,) causes stretching of the large
vortices and thus increases the values of 4, and w, in (3.6). This increase, in turn, contributes
to the production of turbulent fluctuations in (3.10). The increase in & due to an increasé in
d, is balanced by the dissipation of turbulence in (3.10) associated with the coefficient ¢0 This
dissipation also appears as a source of thermal heat in (3.9), thus completing the cascade
process. | o : : : :

4. DETERMINATION OF THE CONSTITUTIVE GOEFFIGIENTS

Already in §2 we have identified the inertia coefficients ,, y,, which occur in the equations
of motion (see I, equations (2.10), 5 or (5.26)—(5.28)). Our goal here is to provide estimates for
certain of the constitutive coefficients in §3. Some of these estimates are based necessarily on
highly idealized ‘cartoons’ of processes occurring on the microscopic level.

4.1. Dissipation of turbulence

Consider a fixed box of constant volume V containing a turbulent fluid with a constant
number Vpy (large class 2) eddies, all of which possess equal circulation at a given time ¢ and
distance 7 from their central axes. Let each eddy have the same constant ‘equivalent length’
L and constant radius 7, and suppose that the eddies completely span the volume V, so that

P2 Lpg = const. - (4.1)

Consider now a sequence of similar boxes for all of which the eddies have the same ‘ equivalent
length’ but differ from one another in the radius 7,. For such sequence of boxes, (4.1) implies

that 1
To OC PEE. - ‘ (4.2)

The large eddies are known to pass energy down to smaller dissipating eddies through an
‘inviscid’ process (i.e. a process not dependent upon the microscopic viscosity #*). Because the
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large eddies contain most of the turbulent kinetic energy, the typical vorticity of one of these
eddies has magnitude w* such that

w* oc ufr,, (4.3)
where u is the average speed of turbulent fluctuation of the large eddies within the box. Because
the kinetic energy per unit mass contained within each eddy varies as Lrj * and the turbulent
temperature is proportional to the total microscopic kinetic energy of all the eddies in a given
box (of constant volume V), with the help of (4.2) we find that

O o€ pg Lré u? oc u®. (4.4)

Assuming that some fraction, say £, of the kinetic energy of each eddy is passed down to the
smaller dissipating eddies during each period of rotation, it follows from (4.3) and (4.4)
that - 3

df,/dt oc — By w* oc pi, Ok (4.5)
Comparing (4.5) with the macroscopic equation (3.10) in the absence of turbulent production
and diffusion, we obtain a relation for the dissipation coefficient ¢, defined in (3.11), as

bo = 1 Pk O3, (4.6)

where ¢, is a constant. With the use of (4.3) and (4.4), the differential equation (4.5) can be

rewritten as
du?/dt oc uP/r,. (4.7)

The form (4.7) is a standard empirical estimate for the rate of decay of turbulence (Batchelor
1952, p. 106). ,
4.2. Production of eddies

Although most of the energy dissipated in turbulence is passed from the large eddies to the
smaller eddies by means of an ‘inviscid’ process (as discussed in §4.1), some energy is dissipated
directly through viscous action by the large eddies. The amount of energy dissipated by the
latter mechanism is usually small compared to that dissipated by the former mechanism, so it
is commonly neglected in estimates of the rate of turbulent dissipation. We now suppose that
the number density of large eddies continually adjusts itself so as to minimize the direct
dissipation by the action of viscosity on the scale of the large eddies. (Similarly, we would
expect the number density of small eddies to be such that the energy dissipated on the scale of
small eddies (passed down from the large eddies) is a minimum.) Because of the uncertain form
of the large eddies and the ad koc nature of this assumption, such an approach cannot be
expected to yield very accurate results; however, it may serve as a re-enforcement to strictly
empirical estimates.

- The velocity field at time ¢ associated with a decaying line vortex at ¢ = 0 of initial circulation
I’y is given by Batchelor (1967, p. 204), and is recorded here (with a slight change in notation)

as r \
¥ to)q_ -
b = 21tr{1 e).(p( 4v*t)}’ (4.8)

where v* = pu*/p* is the microscopic kinematic viscosity and v§ is the circumferential
component of the microscopic velocity vector v*. Using (4.2) and (2.14), and letting

1, = v/ (4v*i) (4.9)
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be the cut-off radius of a combined (Rankine) vortex, the turbulent temperature 6, associated
with a volume V containing a constant number pg ¥ of such vortices is proportional to the total
kinetic energy contained in the box and is given by

[} 2\)2
BTOCpELf r(v;‘)zdrocpELJn%{l—exp(—:—z)} dr. (4.10)
0 0
If r, € 14,05 in (4.9) can be approximated by
Opoc pg L{1+41n (ry/7.)}. (4.11)

Recalling (4.9) and differentiating (4.11) with respect to ¢, the rate of change of . due to direct
viscous dissipation (temporarily denoted by — D) is obtained as (because L is independent

of 7,)
D o pg/t. (4.12)

Solving for ¢ in (4.11) with the use of (4.9) and substituting the result into (4.12), we
obtain

DocpEexp(%—C), ‘ (4.13)
PE

where 4 and C are constants.
Remembering the objective of minimizing the viscous dissipation D stated at the beginning
of this subsection, by differentiating (4.13) with respect to p; and setting the result equal to

zero we have
pPg € On. ' (4.14)

Dividing (4.14) by 6, differentiating the resulting equation with respect to ¢ and comparing
with the macroscopic equation (3.8), we find that

Yo = Pr/0r (4.15)

The variation of the turbulent temperature with time (from a suitable initial time ¢,) for the
flow described in §4.1 can be obtained from the differential equation (4.5) and (4.14) as

Oy o (t—1o)7", (4.16)

which is equivalent to the estimate cited by Batchelor (1952, p. 134).

Alternatively, if we return to the statements preceding (4.2) in §4.1 and now specify the
‘equivalent length’ L as being proportional to 7, and again considering a sequence of similar
boxes, then from arguments similar to those used previously it follows that

70 0 piy o < phs O, (4.17)
3 3
and pp € Oy Vo= 5‘;—:. (4.18)

With the use of (4.17) and (4.18), the decay of turbulent temperature with time, calculated
from an equation similar to (4.5), is

Oy oC (t—1,) 72 (4.19)
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The experimental results of Comte-Bellot & Corrsin (1966) and of Gad-el-hak & Corrsin
(1973) indicate (after a reinterpretation of their ‘root mean square’ velocity data) that for the
flow cp'nsidcred here the turbulent temperature is proportional to ({—¢,) according to

‘ B oc (t—1t5)73, (4.20)
The result (4.20) clearly falls between the estimates (4.16) and (4.19), thus indicating that the
dependence of vortex ‘length’ L on vortex ‘width’ 7o is intermediate to the two extremes
considered here.

4.3. Diffusion of thermal heat and turbulent fluctuations

Once more we recall the flow described in §4.1, but now admit the gradients in thermal and
turbulent temperatures in the x,-direction. In particular, we consider two neighbouring eddies
with equal radii 7, and positioned such that a line running through their centres and normal
to their axes is parallel to the base vector e,. With the use of formulae of the type (4.3) and the
notations u,, u, for average speeds of the two eddies, the central vorticities of the eddies have
the magnitudes ¥ oc u,/ ro and ¥ = u,/r,. The microscopic kinetic energies of the eddies per
unit mass are K, oc Lu?r2 and K, oc Lu2r3, and 6f and 65 denote the average microscopic
temperatures of the eddies. The total energy per unit mass E, and E, of the two eddies are:

E oc (B +c*0F) 2L, E,oc (u3+c*03)r2L, (4.21)
_whcré ¢* is the microscopic speciﬁc heat. We now set k ’
u, =u, u,=u+Au, K K, K,=K+AK, 0f=0% 05=0*+A0% (4.22)

where the difference terms Au, AK, AG* in (4.22) are assumed to be small. On the assumption
that during each period of eddy rotation some fraction, say /, of the energy difference AE
between the eddies is exchanged, to leading order in the ‘difference’ quantities the rate of
energy transfer @ between the two eddies can be estimated by using (4.22) as

Q < fIAE) 0 ~ fury(Au?+c* AO*) L, (4.23)

where w* denotes the average value of 0§ and wf.

Imagine again a cubic box of volume ¥ containing Vp eddies of radius r, and ‘equivalent
length’ L > r,. Then, any cross section of the box with area 4 = V% should intersect
approximately either 4/7, L eddies (if axes lie parallel to the surface) or 4/r] eddies (if the axes
of the eddies lie perpendicular to the surface). If we recall (4.2) and the assumption that L is
a constant independent of 7y, the number of eddies intersected by the cross section of the box
is proportional (apart from the factor 4) to either p3, or pg, which represent the extreme values.
We now assume that the number of eddies intersected by the cross-sectional surface is
proportional to the geometric mean of the above two estimates, namely pi, eddies. If ¢ is the
macroscopic total heat flux (both thermal and turbulent) measured per unit area and per unit
time in the e, direction, it follows that

gocpl Q. (4.24)
We can further identify the thermal and turbulent temperature gradients as

00y AO* 20, A

Ox o Ox 1y (4.25)
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From (4.20)-(4.22) and using (4.2), we find that

o 00,
0= gt 42 = pil0h (a8 4o 32), (4.26)

where ¢, and ¢, are constants. The result (4.26) in conjunction with (3.9)—(3.11) implies that
the thermal and turbulent heat conductivities are given byt

kg =6, P;:% 0%1:: by = 03/’;;%6%1‘- (4.27)

In line with the discussion preceding (4.24), the exponent attached to pg in (4.27) may vary
from —3% to 0 depending upon the orientation of the eddies. However, the expressions
(4.27), , are consistent with the observation that diffusion rates both decrease as the number
density of eddies increases at a constant f; and also increase as 0 increases at a constant py,.

Alternatively, rather than assuming that L is a constant, we may assume that it is
proportional to r,. If this is adopted, an argument similar to that given above yields the

results.

2 % *
ror"(f< AL )), g < ptQ,
0 0
so that ky o pOh, ky o pii O (4.28)

4.4. Cocfficients in the expression for free energy

The coefficients in the expression for the free energy ¢, namely ¢,, ¢, and ¥, are restricted
to satisfy the equations (3.3) and the two equations in Part I (equations (8.17), ;). These
restrictions result as a consequence of the assumption (3.2), for € in conjunction with the more
general thermodynamical restrictions obtained in I (§6). Assuming that the coefficient vy,,
which occurs in the expression (3.2)4 for £, is of the form

Yo = ¢(pe/0x), ‘ (4.29)

where ¢ is a constant, then one possible form for the coefficients ¢, (n = 1,2, 3) that satisfies the
above restriction identically is

Vo= s pE™™"° (n=1,2,3), (4.30)

where ¢,, ¢;, ¢ and m are arbitrary constants. In particular, if we assume that a change in pg
does not affect the free energy ¥, then we can set m equal to one in (4.30) and obtain

VU1 =1¢0p, Yy=1cs0p, Y3=0ce0p. (4.31)

The simple results (4.31) appear to be reasonable and at the same time are consistent with
previous developments. If necessary, however, we could accommodate alternative forms in
accordance with (4.30) when m # 1.

4.5. Viscosity coefficients
So far we have not been able to devise simple and convincing arguments to determine the

functional forms of the viscosity coefficients g4, #; and v, (similar to the arguments presented

t In writing (4.27), it is implicitly assumed that the contribution to &, by the microscopic heat conductivity £*
is negligible. :

33 Vol. 327. A
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previously in this section). It may be recalled, however, that in the usual ‘mixing length’
approximation the turbulent viscosity’ vi(= gp/p) is assumed to vary as

vy OC ur, (4.32)

where u is the average fluctuation speed introduced earlier in (4.3) and 7, is a typical width (i.e.
the ‘mixing length’) of the eddies (see Tennekes & Lumley 1972, p. 44, equation (2.3.9)).
From (4.2) and (4.4), we know that u oc 6% and r, o p3}, so that after identification of the type
(ps/p) = v*+vy (4.32) implies \

1 = ¢ pOk P+ 1%, (4.33)

where ¢, is a positive constant and u#* is the microscopic viscosity. In obtaining (4.33), it is
observed that yg/p plays the same role as the usual ‘turbulent viscosity’ v, (after neglecting x*
n (4.33), of course). Alternatively, if we assume that the vortex ‘length’ L is proportional to

1, the exponent of py in (4.33) becomes —3 rather than —1.

5. SOLUTIONS OF SOME SIMPLE TURBULENT FLOW PROBLEMS

In this section, we consider the solution of the macroscopic equations of §3 for certain specific
anisotropic turbulent flows, for the purpose of illustrating the use of these equations in solving
turbulent boundary and initial value problems. We first consider the conditions under which
a constant uniform gradient in the velocity v can exist throughout the flow, including the
special case in which this gradient vanishes. The results of this discussion are then applied to
study the gradual return to ‘isotropy’ of an initially ‘anisotropic’ fluid when the gradient in
the velocity v is vanishingly small. Alternative simplification of the equations of § 3 appropriate
to plane turbulent channel flow is next considered, and this is followed by a detailed
comparison of the theoretical predictions for plane turbulent Poiseuille flow with the
experimental results of Laufer (1951).

5.1. Flow possessing a constant uniform velocity gradient

Perhaps the simplest type of turbulent shear flow to study analytically is flow possessing a
constant uniform gradient in the ordinary velocity v. Such flows are sometimes referred to in
the literature as a special case of the class of ‘homogeneous’ turbulent flows (see Champagne
et al. 1970). We consider, in particular, the possibility of a flow in which the velocity has the
form -

v = (Ax,+B)e,, (6.1)
where 4 and B are constants, and in which all other variables are independent of x, and ;.
Assuming that the constant 4 is positive and recalling equation (5.10), of Part I, the direction
a® along which the director is aligned can be easily calculated to be

= [, %, 0], | (5.2)

so that d, = d, = %*d and d, = 0. If we take b = I = 0 and denote by w the magnitude of the
director velocity w, the equations of motion (3.6) and (3.7) for such a flow are given by

12Pw""2p¢’2d+ﬂsAd“V1w+y‘P o Wiig pax(f/fsad) (5.3)
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f=ﬁo+{( —¥y) wd —ggprvd — % P'ﬁlax
od d o(, od
2mﬁa( ) —pY, d*+°§pda—‘:+pda(¢3a)+§vl Ad*}, (5.4)

0
2{ v w— i+ g 4 p A= pn 42 a4 pa2 (9,2 =0, (59

where p, is a constant of integration.
Using (5.3), we can reduce (5.5) to the simpler form

%{ps wd+,usA+%§pd—a—£—l} =0. (6.6)
The values of p and d are determined from (5.3) and (5.4) and pg, 6y and 6 are determined
from (3.8)—(3.10); however, because the velocity v is prescribed by (5.1), (5.6) gives an
additional equation which must be satisfied identically for the assumption (5.1) to be
admissible.

Although there are certain special cases in which the values of the independent variables are
such that (5.6) is satisfied identically, this will not in general be the case. We must, therefore,
conclude that the linear velocity profile (5.1) does not represent a general solution of the
equations (3.5)—(3.10) governing the macroscopic motion of turbulent flow. This result is
hardly surprising considering that a similar observation can be made even for a laminar flow
where the viscosity varies with temperature and density (as is evident from (5.6) in the absence
of turbulence). Several analytical and numerical studies in the literature commence with the
assumption (5.1) for the ordinary velocity (see, for instance, the recent numerical work of
Rogers & Moin 1987). In the light of the observation just made, the results of these studies must
be viewed with some scepticism. It should perhaps also be noted that (5.6) is not necessarily
satisfied even for a uniform velocity flow (4 = 0) unless the other independent variables are
also uniform in x or unless the director magnitude d vanishes. In many experimental studies,
the spacial variation of pg, 6, and d is sufficiently small that the macroscopic velocity v is
observed to be nearly uniform. For such a case, as will be discussed in § 5.2, the velocity gradient
is said to be ‘vanishingly small’ and may be allowed to approach zero in order to obtain
approximate solutions of the given problem.

.5.2. Decay of ‘anisotropy’ with vanishingly small velocity gradient

A macroscopic fluid particle that initially possesses certain directional dependence (or is
‘anisotropic’) with d non-zero would be expected to make a slow transition to an ‘isotropic’
state (in which d vanishes) when placed in a stream with vanishingly small velocity gradient
grad v. Various attempts to study this process experimentally have been made by Townsend
(1954), Uberoi (1956), Comte-Bellot & Corrsin (1966) and Tucker & Reynolds (1968),
although in the present context the data provided by these studies must be viewed as somewhat
incomplete: these experimental studies are incomplete both because the range of measurements
are rather limited and because they do not clearly provide data relating to the relevant physical
aspects of the microscopic flow which would facilitate estimates of p; and d of the present
theory.

In these experiments, an incompressible fluid is first distorted (and hence made ‘anisotropic’)

33-2
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by a grid or duct of rapidly changing cross section, and then it is passed into a straight channel
of constant cross-sectional area in which grad v is observed to be nearly zero. While the flow is
being distorted, some of the large eddies become aligned and the diagonal components of the
stress tensor £; are observed to differ from one another considerably (this giving evidence that
the flow is anisotropic). When the velocity gradient vanishes in the straight uniform channel,
both the alignment of large eddies and the flow anisotropy are observed to lessen very
gradually.

In the absence of a velocity gradient, we would not expect the direction of alignment of the
large eddies, represented by some fixed unit vector a say, to change. We therefore set

d = da, (5.7)

where a is determined from the initial conditions. For the purposes of this example, we assume
that the external director body force ! vanishes. For a steady state flow in the x(=x,) direction
in which also all quantities are independent of x,, x; coordinates, with the help of (5.7) the
system of equation (3.6)—(3.8) and (3.10) can be reduced to

aZd——-Z V,d+ 2 Slg.e +2 l/f ‘
100° Ry PY 8T P ox 1 Pa 33 —Wnv ax
Opg 00
x0T - 68)
60 00, od o (0d\? ) od\ o*
pPlp == ¢o ( T 3y ) {2P¢2”d'a_x+"1” (‘ag) +p(Yha ex+2'ﬁs‘£)”5;g}~}

If we neglect diffusion and production of turbulent fluctuations in (5.8) and assume the
forms (4.6) and (4.15) for ¢, and 7,, we can integrate (5.8), 5 to obtain

¢, A}

p?

-1
pg = A6y, Oy = ( x+B) , (56.9)
where 4 and B in (5.9) are arbitrary constants of integration that can be obtained from the
initial conditions on pg and 0. Also, v is prescribed and ¢, is a constitutive constant related to
the dissipation rate ¢,. Equations (5.9) imply that py and 6, approach zero as x becomes large,
as might be expected. A general solution of (5.2), is not easily obtainable and we begin by
examining a solution of (5.2), for which pgy and 6 are taken to be constants. In this case,
(5.8), reduces to

0% od '
fp(0" = 249) s+ vy v+ 2pad = O (5.10)
and has a solution of the form
d=Ce™*, (5.11)

where C is a constant and the temporary notion f is defined by

v vt [VEoR—2p%, (o* —24;[r3)
p= w* 24¢3) (6.12)

Because we expect d to decrease in the downstream direction, the % sign in (5.12) is chosen

so that £ is positive. It is clear from (5.12) that the term involving v,, and possibly also terms
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involving ¥, and ¥, control the decay of flow anisotropy in the absence of a gradient in the
velocity .

The solution (5.11) is compatible with previous experimental studies; however, a direct
comparison of the experimental results with the solutions obtained here is not possible because
the existing reported experimental studies do not provide sufficient data from which estimates
for py and 4 can be obtained.

5.3. Plane turbulent channel flows

We now consider simplifications of the viscous flow equations of §3 appropriate for fully
developed plane turbulent channel flows (such as plane Couette or Poiseuille flow), for which

we may assume that v=1(x)e,. (5.13)

Here e, is the direction along the centreline of the channel and e, is the direction normal to
the walls of the channel, as illustrated in figure 1 for plane Poiseuille flow. From (5.13), the
direction of d (i.e. @®) is found to be constant and uniform everywhere in the flow apart from
a possible discontinuity corresponding to a change in the sign of grad ». Remembering that the
components of @® are calculated from grad v using (5.13), the components of d are:

d, = d(+%,%4,0), (5.14)

where the £ sign in (5.14) is chosen to correspond with the (plus or minus) sign of dv/0x,.
For a fully developed plane channel flow, we would expect all variables pertaining to the
macroscopic flow and the turbulent fluctuations to be functions of x, only. Then, (3.5) and
(3.8) are satisfied identically and after calculating /, and A,; with the help of (5.13) and (5.14),
setting b = I = 0 and assuming also that dv/0x, > 0, (3.6), (3.7), , and (3.10) become

- at4-) =t 452 a¢‘+f"’ax2(¢saxz)} Z. (5.16)
b=t +{ ) 2=ty 72— %”'—)

ot ot (2], e

o= o (k) + o o) (22 (5.18)

0%,
The results (5.15)—(5.18) provide a sufficient number of equations for the determination of

d, v, p and 6y as functions of x,. Using (5.15) and integrating once with respect to x,, (5.16)
becomes

X +°¢-,oda"0l xza Po 4 4, _ (5.19)
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Ficure 1. A sketch of two-dimensional Poiseuille flow in x,—x, plane of width 2H
showing the velocity profile with V as the wall velocity.

where 4 is another constant of integration and p, is a prescribed function of x,. Assuming that
¥, and d are known, (5.19) yields a solution for 0v/0x,. Elimination of dv/0x, between (5 15)
and (5.19) results in the following differential equation for 4:

_ 0, o4\ [ # apo) ] il o1 | s
_ax2(¢36x2)+[2pﬂ8(,4+ Xom |~V |d— o £ 2+4 o, (5.20)

Using (5.19) and the estimates (4.8) and (4.29), for ggo and k;, where py is assumed to be
a known function of x,, (5.18) yields an equation for ; of the form :

pe, ot 6k = —a—(cs p?ﬁi.gzz) " (i;:du 1) (A+x2 P a’/’l) (6.21)
It should be emphasized that because the coefficients of ¢ in (5.20) depend on 6; and because
d appears explicitly in (5.19) and (5.21), these equations for dv/0x,, d and 6y are coupled.

As discussed in I (§3), constitutive equations must also be found for the various supply terms
in the jump conditions at the walls as functions of the values of the various independent
variables evaluated-at the walls, as well as certain intrinsic features of the walls (such as surface
roughness). The slip velocities ¥,— ¥, and ¥; — ¥,, where ¥}, ¥, are the velocities of the walls and
V,, V, are the velocities of the fluid bordering these walls, as well as various boundary conditions
for the other independent variables such as pg, 6, and d, may be obtained from the jump
conditions appropriate to turbulent-nonturbulent interfaces (as presented in I, §7) once the
forms of the surface supply terms appearing in these jump conditions are known.

Finally, we note that if i, is set to zero in (5.20), we are left with a simple quadratic equation
for d. In this case, no independent boundary conditions can be required for 4, so that
production of 4 along the boundaries will not directly affect the value of 4 within the body of
the flow. Recalling the terminologies of §2.1, we note that since the eddy lengths may become
comparable to the size of the microscopic region £’ associated with a macroscopic point x, it
seems reasonable that the intensity of vortex stretching in a given fluid element might affect the
level of vortex stretching in its neighbouring fluid elements. For this reason, it is advantageous
to admit non-zero values of {5 (which is related to the ‘non-local’ effect discussed above) in
a general theory of turbulent channel flow. However, in certain regions of the flow and for the
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idealized case of extremely high-intensity turbulence (for large 6.), where this effect may be
neglected, we set i3 equal to zero in (5.20) to obtain a solution for 4 in the form

A I R e 1 sl R S VL 2”(%¢)}

(5.22)
At this point, it may be enlightening to compare the present theory with the usual ‘Reynolds
- stress’ formulation of turbulence. We note that for plane channel flows, the macroscopic
velocity © of the present theory and the usual ‘mean’ velocity become identical (because w
vanishes in (2.9)). The ‘mean’ momentum equation for incompressible turbulent channel flow
is (see Reynolds 1976, equation (2.1a))

p* _ 0% OR,
| M Py
where p¥* is the averaged pressure, u* is the dynamic viscosity of the fluid, v = v-e, is the
‘mean’ (or the macroscopic) velocity in the e;-direction and R,, is the relevant component of
the ‘Reynolds stress’ tensor. Comparing (5.23) with (5.16) and after identifying (x,,%,) =
(x,y), p* with p and assuming the form (4.33) for ug, the component R,, of the Reynolds stress
is readily identified as

PR, = (2//'6‘?+51P0%1'P-%)_—P¢'2d2+LPd g’ +pd (%a - (5.29)

(5.23)

The coefficients on the right-hand side of (5.24) are functions of p, and 6, only. The value
of d at the wall of the channel (which influences the value of R,, in (5.24) at the wall) is strongly
influenced by both the slip velocity along the wall and the macroscopic velocity gradient. The
result (5.24) indicates that both the macroscopic velocity gradient and the wall slip velocity
contribute to the stress acting on the wall. In fact, the expression (5.24) may be interpreted (in
the special context of channel flow) as a constitutive equation for R,,.

5.4. Solution for turbulent plane Poiseuille flow in a two-dimensional channel

It is now of interest to consider a detailed comparison of the predictions of the theory for the
channel flow equations obtained in §5.3 with a relevant experimental study. For this purpose,
we consider a plane Poiseuille flow, as illustrated in figure 1, and compare our solution with
the experimental results of Laufer (1951). (The results of §5.3 are also applicable to plane
Couette flow; however, the available experimental data are not as detailed for this
problem.)

The equations applicable to a plane turbulent Poiseuille flow are given by (6.19)—(5.21) with
A =0, where the simplification (5.22) may be used in place of (5.20) under certain
circumstances. Because these equations are coupled and highly nonlinear, an exact analytical
solution (in the context of the present theory) for this flow is not readily attainable.
Furthermore, because there still remains several constants in some of the constitutive equations
that have not yet been identified, a full numerical solution for this problem is not possible at
this time and even with some guesses at the values of the constants, may not be particularly
enlightening. For these reasons, and partially in response to suggestions made by Laufer (1951,
1954), the flow field is divided up into three regions, and a simplistic approximate solution is
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obtained in each of the three regions. Comparison with the data of Laufer (1951) then allows
one to make estimates for certain of the as yet undermined response constants and to verify that
solutions which are compatible with the experimental findings are predicted by the present
theory.

Both the solutions presented here and the experiment of Laufer (1951) are relevant to air
flow through a 12.7 cm wide channel at a Reynolds number of 61600 (based upon the
maximum value of v and one half the channel width of 2H), and streamwise pressure gradient
of 0p/0x, = —5.67 kg s72 m™% Based on Laufer’s ‘ turbulent microscale’ measurements, a rough
estimate for eddy density (assumed constant across the channel width) is calculated to be
pe ~ 6.4 eddies per cubic centimetre. Using (2.13) and (2.14), the value of turbulent
temperature @y is obtained from Laufer’s measurements of root-mean-square values of the
(microscopic) velocity fluctuations and is plotted in figure 2. Also, since the director velocity
w vanishes identically for this flow, the macroscopic velocity v and Laufer’s ‘mean’ velocity are
identical. Finally, the constitutive coefficients ggo, kgs Y1, Vo, Y5 and pg are assumed to be given
by (4.6), (4.27),, (4.31), , 3 and (4.33), respectively, and the remaining coefficients g, and
v, are simply assumed to be constants.

100 wall : intermediate I central
region: region : region

| i
8O, ! :
! 1
:
i i
60 I 1
i i
0, : :
|
o |
| ]
| |
1

20~ | TS
| 1
] ]
! '
] 1 | L

02 04 06 08 10

0

' 1+(x,/H)
F1GURE 2. Variation of turbulent temperature 6, along the half-width of the channel (—H < x, <0) plotted
against 14 (x,/H), as predicted by the present theory (solid lines) and its comparison with experimental
measurements (&) of Laufer (1951). The theoretical predictions are calculated from equations (5.25), (5.27),

(6.30) and the experimental points represent the converted form of data given in figs 11, 13, 14 of Laufer (see
also the discussion under Results in §5.4).

(i) Solution in central region (0.8 < 14 (x,/H) < 1)

The measurements of Laufer (1951, p. 1264, fig. 27) indicate that in the region containing
the centre part of the flow (defincd above) the diffusion and dissipation of turbulent
fluctuations are nearly balanced and the production of turbulence is negligible. If we thus
neglect the production term in (5.21), we are left with

3 a ( 1 .1 ae )
¢, Pt Ok = —| ¢ Pt O8 =—]. 5.25
p 1P§: (y o, 3PE i‘ax2 ; ( )
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Neglecting also quadratic terms in the derivative 00;/0x,, (5.25) can be rearranged as

2
0y _ P_CIP_%T, (5.26)

2
Oxp Cq

Given that ¢, and ¢, are non-negative and that the temperature gradient 06,/0x, is zero along
the centreline x, = 0, a solution of (5.26) is

i

) x,] s (5.27)

i | i
6, = Bexp [(pc:__pé) x2] + Bexp [— (pc;_p];
3 .

3

where B is a constant of integration.

(i) Intermediate region (0.15 < 14 (x,/H) < 0.8)

In the intermediate region (defined above), the production of turbulence becomes a major
contributor to the turbulent temperature equation (5.21). It is convenient for our present
purpose and consistent with the later observations of Laufer (1954) to assume that in this
intermediate region the production and dissipation of turbulence are completely balanced and
the effect of diffusion is negligible. Indeed, such an approximation enables us to obtain a
compact analytical expression for 6. If the contribution to the production of turbulence by the
director is also neglected in this region, (5.21) reduces simply to

3 x2 ap 2
¢1P% Oh = —"1(——9) . 5.28
perpkOh =250 - G2y
Substituting the expression (4.33) for p, (after neglecting the term involving x*) into (5.28),
and taking the square root of the resulting equation, we obtain a solution for 6, as

—Ll_xm (5.29)

.= .
* PV (¢1¢q) Oxy

(iii) Wall region (0 < 1+ (x,/H) < 0.15)

Near the wall, we would expect the influence of the director on both 6 and v to become fairly
large, as is evidenced indirectly by the rapid changes in v and 6, with x, in this region. An
estimation of Laufer’s (1951) data for 6 and v suggests further simplification for d, which
previously was assumed to be given by (5.22) with ¢; = 0. For purposes of obtaining a simple
solution of (5.21) for ;, we make the further approximation (which is consistent with the data
of Laufer 1951) that ’

W AV (5.30)
0x, He

Substituting (5.30) into (5.21), after again neglecting the diffusion terms, assuming that the
production of turbulent fluctuations is now completely controlled by the term possessing the
highest power of d, and using the previously mentioned constitutive expressions for pg, ¥, and
¥, we obtain _

2 _ooV1 A ?21)"2
pclfoﬁgﬁa‘ = 32%(%#2) 65 o) (5.31)

34 Vol. 327. A
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Taking the square root of (5.31) and integrating the resulting equation once with respect to
x,, after rearrangements gives a solution for 6 of the form

31 2\ 14
0T=[C—3 \/2(———§p’25::f§)x2] : (5.32)

where C is another constant of integration.

(iv) Results

After appropriate selection of the response constants and specification of the various
boundary conditions, the solutions (5.27), (5.29) and (5.32) for 8 are plotted in figure 2 in
their respective regions and are found to compare quite well with the data of Laufer (1951),
both with regard to their numerical values and their functional forms. Using these solutions for
O, the velocity v is determined with the help of (5.19) and (5.22) and is plotted in figure 3
along with Laufer’s ‘mean velocity’ data. The solution obtained here for v compares well with
the data of Laufer, although very near the wall the slope in v is considerably less than that
obtained experimentally. This deviation may be attributed to the fact that the term involving
Y5 in (5.20) has been neglected in the approximation (5.22). The director is expected to
become large along the wall and the effect associated with the term involving ¥, in (5.20) will
necessarily increase the values of 4 and Ov/0x, over those given by (5.22) and (5.19) in the
region bordering the wall.

During the course of comparison of these solutions with the data of Laufer, values are
necessarily assumed for certain of the response constants. Some of these constants, namely ¢,
and ¢, are chosen so that expressions for dissipation and diffusion of turbulent fluctuations

10

| X
§ :
i i
0.9 ' i
] !
| 1
| '
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1 1
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. ! |
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U e ! E
=
| ]
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wall : intermediate 1 central
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i )
05~ | i
' I
1
l l
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0 0.2 04 0.6 0.8 10
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Ficure 3. A plot of the macroscopic velocity profile v/, along the half-depth of the channel —H < x, <0 for
plane Poiseuille flow according to the approximate solution of §5.4 and its comparison with corresponding data
of Laufer (1951). The deviation between prediction of the theory and experiment should be attributed to the
nature of the approximate solution near the wall region.
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obtained previously are consistent with the estimates for these terms given by Laufer (1951,
p. 1264, fig. 27). For other of the coeflicients, the data necessary for such a term-wise
comparison is not available. In plotting the curves in figures 2 and 3, the following values of
the response constants are assumed:

¢, =582x10 mi-°T 3573 )

¢y = 1.54x 1073 kg-mi-°T ¥ 53,

¢ =217Tm°T 557 v /p,=68x107% (5.33)
¢s/tg =0.61 m®-°T 1571 kg™,
c3/pe 1077 m”-°T 2573 kg™, )

In fully developed channel flows, such as that considered here, it is not necessary to make an
explicit assumption for the coefficient yq; however, in other flows with non-vanishing inertia
terms in (3.6) and (3.7), this would not necessarily be true. It is important to emphasize that
the choices (5.33) are tentative and are recorded here for completeness.

Finally, plots of the approximate solution for the director magnitude d using (5.22), both
before and after being multiplied by the turbulent temperature gradient, are shown in figure
4. It is of interest to note that the solution for 4 in (5.22) becomes unbounded along the
centreline x, = 0. This dilemma is again caused by the fact that the term involving ¥, in (5.20)
is neglected in the present discussion, so that the condition that 0d/0x, vanishes along x, = 0

18 ‘
‘-
16 —\ -2.0
i
1l ‘.\
\ —cd (aarlbxz)
~ 12 Vv —41.5
& \ -
) * &0
n o~
210 =
o 8 —H1.0 =
> S
& 6 T"
4 0.5
2
I ] ] 1 0
0 0.2 04 06 08 10

L+ (x,/H)

Ficure 4. Estimated variation of the magnitude of the director 4 and the product d(06,/0x,) along the
half-width of the channel against 1+ (x,/H) according to the approximate solution of §5.4.
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cannot be applied. Although we would not expect (5.22) to yield reliable values for 4 either
near the wall, as mentioned previously, or near the centre of the channel, the values obtained
in the intermediate region (0.15 < 1+4x,/H < 0.80) appear to be reasonable.

6. CONCLUDING REMARKS

Comprehensive comparison of predictions of the theory presented in this paper and in I with
experimental data and numerical simulations are necessary in order to both verify and
complete the forms motivated in §4 for the response coefficients, as well as to determine
additional constitutive relations for the supply terms appearing in the jump conditions in
Part I (§7). These supply terms may then be used in conjunction with the appropriate jump
conditions, to predict the boundary conditions on the independent variables along a surface of
discontinuity. A first attempt for such a comparison in the case of plane turbulent Poiseuille
flow is made in §5.4 of this paper. Although we are able to obtain a rough estimate for py from
the data of Laufer (1951) for this problem, this data is not sufficiently detailed so as to enable
similar estimates for 4; and so the findings of §5.4, while encouraging, must be regarded as
somewhat tentative. With such goals in mind, we now consider certain measurements that, if
provided by future experimental data and/or numerical simulations, would both contribute to
our general understanding of turbulent flow phenomena and enhance further development of
the present theory.

As is discussed in §2, the additional turbulence variables utilized in this study are directly
related to certain physically relevant features occurring on the microscopic scale of motion.
Particular microscopic features whose measurements would allow proper determination of pg
and 4 may be summarized as follows:

(1) the number of eddies of class 2 (containing most of the ‘turbulent kinetic energy’) per
unit volume (see §2.3);

(2) the number of those eddies which are (approximately) aligned in the direction a® per
unit volume (see §2.4);

(3) the typical vorticity magnitude w* of an unaligned eddy; and

(4) the typical vorticity magnitude w® of an aligned eddy.

There has been a considerable amount of recent interest in macroscopic turbulence
modelling based upon idealization of significant microscopic flow structures. Although the
instrumentation necessary to measure the relevant aspects of these structures (and in particular
the four items listed above) were probably not available when many of the classic experimental
studies were performed, it is believed that such instrumentation is either available today or will
soon become so; in this connection, see also Laufer (1975). Because measurements of this type
relate to the basic underlying structure of the flow, they are pertinent not only to measurements
relating to the independent variables and character of the response functions in macroscopic
theories of this sort, but also to a basic understanding of the fundamental physical mechanisms
on the microscopic scale that control the macroscopic flow.

The results reported here were obtained in the course of research supported by the U.S.
Office of Naval Research under Contract N00014-86-K-0057, Work Unit 4322534 with the
University of California, Berkeley.
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